Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response
نویسندگان
چکیده
A variety of extrinsic chiral metamaterials were fabricated by a combination of self-ordering anodic oxidation of aluminum foil, nanoimprint lithography and glancing angle deposition. All of these techniques are scalable and pose a significant improvement to standard metamaterial fabrication techniques. Different interpore distances and glancing angle depositions enable the plasmonic resonance wavelength to be tunable in the range from UVA to IR. These extrinsic chiral metamaterials only exhibit significant chiroptical response at non-normal angles of incidence. This intrinsic property enables the probing of both enantoimeric structures on the same sample, by inverting the tilt of the sample relative to the normal angle. In biosensor applications this allows for more precise, cheap and commercialized devices. As a proof of concept two different molecules were used to probe the sensitivity of the metamaterials. These proved the applicability to sense proteins through non-specific adsorption on the metamaterial surface or through functionalized surfaces to increase the sensing sensitivity. Besides increasing the sensing sensitivity, these metamaterials may also be commercialized and find applications in surface-enhanced IR spectroscopy, terahertz generation and terahertz circular dichroism spectroscopy.
منابع مشابه
Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond.
We report on a wafer scale fabrication method of a three-dimensional plasmonic metamaterial with strong chiroptical response in the visible region of the electromagnetic spectrum. The system was comprised of metallic nanoparticles arranged in a helical fashion, with high degree of flexibility over the choice of the underlying material, as well as their geometrical parameters. This resulted in e...
متن کاملScalable Fabrication of Quasi-Three-Dimensional Chiral Plasmonic Oligomers Based on Stepwise Colloid Sphere Lithography Technology
We report a simple and scalable method for the fabrication of spiral-type chiral plasmonic oligomers based on the stepwise colloid sphere lithography technology. Through carefully adjusting the azimuthal angle Φ of polystyrene (PS) sphere array monolayer and the deposition thickness k n , the chiral plasmonic oligomers composed of four achiral particles can be successfully fabricated on a desir...
متن کاملOptical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملExtrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array
Giant chiroptical responses routinely occur in three dimensional chiral metamaterials (MMs), but their resonance elements with complex subwavelength chiral shapes are challenging to fabricate in the optical region. Here, we propose a new paradigm for obtaining strong circular conversion dichroism (CCD) based on extrinsic 2D chirality in multilayer achiral MMs, showing that giant chiroptical res...
متن کاملOptical chiral metamaterials: a review of the fundamentals, fabrication methods and applications.
Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmon...
متن کامل